Forensic science is concerned with identifying and interpreting physical evidence. Long-standing forms of physical evidence include fingerprints, bloodstains, hairs, fibers, soils, and DNA. However, any object can serve as physical evidence if it provides reliable insight into the activities associated with a death scene or crime. Physical evidence is often of critical importance to a criminal investigation because testimonial evidence, the statements provided by victims, suspects, and witnesses, is frequently incomplete and inaccurate. To address these limitations of testimony, an investigator will compare the statements to the interpretation of physical evidence. For example, an investigator will require a suspect to provide an alibi to describe his or her whereabouts during the time period of a crime and compare their statement to mobile phone activity.

One of the most difficult forms of physical evidence to establish is the amount of time that has lapsed since death, the postmortem interval (PMI). Establishing the PMI is critical to every death investigation because it facilitates the identification of victims and suspects, the acceptance or rejection of suspect alibis, the distribution of death certificates, and the allocation of assets outlined in wills. However, PMI is difficult to establish because we have a relatively poor understanding of corpse decomposition. To improve the ability to estimate PMI, forensic science has incorporated an ecological perspective. When an animal dies it becomes a large nutrient resource that can support a complex and phylogenetically diverse community of organisms. As this decomposer community recycles nutrients, the corpse progresses through several forensically recognized stages of decomposition, including Fresh (before decomposition begins), Active Decay, which includes Bloating and Rupture, and Advanced Decay. Biotic signatures associated with these stages of decomposition, such as the development rate of blow fly larva, succession of insects, and changes in the biochemistry of corpse-associated ‘gravesoil’, can be used to estimate PMI. However, no method is successful in every scenario. For example, limitations of forensic entomology include uncertainty in the interval between death and egg deposition, lack of insects during particular weather events or seasons, and region-specific blowfly larval growth curves and insect communities. Using microbial community change to track the progression of decomposition may circumvent many of these limitations because microbes are ubiquitous in the environment, located on humans before death, and can be reliably quantified using high-throughput DNA sequencing.

Microbes play an important role in decomposition. For example, from the Fresh stage to the Bloat stage, enteric microbes likely contribute to putrefaction by digesting the corpse macromolecules, which in turn generates metabolic byproducts that cause the corpse to bloat. Evans proposed that a major shift in microbial communities occurs at the end of bloat when the body cavity ruptures , as this key event likely shifts the abdominal cavity from anaerobic to aerobic. Additionally at the Rupture stage, nutrient rich body fluids are released into the environment often increasing pH likely altering endogenous microbial communities. The microbiology of corpse decomposition can now be investigated in detail by utilizing sequencing advances that enable entire communities to be characterized across the timeline of decomposition. These data will not only allow us to understand the underlying microbial ecology of corpse decomposition, but also the feasibility of using microbes as evidence. We must rigorously test whether microbial community change is sufficiently measurable and directional during decomposition to allow accurate estimates of past events such as the PMI.

 

Forensic Entomology : Post mortem Interval

Leave a Reply

Your email address will not be published. Required fields are marked *


× 1 = 6

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>